Senin, 18 Januari 2010

runus-rumus

Rumus-Rumus Trigonometri
Matematika Kelas 3 > Trigonometri 430

<>

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a

SUDUT RANGKAP

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN ® PENJUMLAHAN

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut I II III IV
a + - - +
b + + - -


keterangan :
a = koefisien cos x
b = koefisien sin x


PERSAMAAN
I. sin x = sin a Þ x1 = a + n.360°
x2 = (180° - a) + n.360°





cos x = cos a Þ x = ± a + n.360°


tg x = tg a Þ x = a + n.180° (n = bilangan bulat)

II. a cos x + b sin x = c
a cos x + b sin x = C
K cos (x-a) = C
cos (x-a) = C/K
syarat persamaan ini dapat diselesaikan
-1 £ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar)

misalkan C/K = cos b
cos (x - a) = cos b
(x - a) = ± b + n.360° ® x = (a ± b) + n.360°



Barisan dan Deret Geometri (Ukur / Kali)
Matematika Kelas 2 >Barisan dan Deret 414

<>

BARISAN GEOMETRI

U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

Konstanta ini disebut pembanding / rasio (r)

Rasio r = Un / Un-1

Suku ke-n barisan geometri

a, ar, ar² , .......arn-1
U1, U2, U3,......,Un

Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)


DERET GEOMETRI

a + ar² + ....... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku

Jumlah n suku

Sn = a(rn-1)/r-1 , jika r>1
= a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)

Keterangan:

Rasio antara dua suku yang berurutan adalah tetap
Barisan geometri akan naik, jika untuk setiap n berlaku
Un > Un-1
Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1

Bergantian naik turun, jika r < 0

Berlaku hubungan Un = Sn - Sn-1
Jika banyaknya suku ganjil, maka suku tengah
_______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.

Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar


DERET GEOMETRI TAK BERHINGGA

Deret Geometri tak berhingga adalah penjumlahan dari

U1 + U2 + U3 + ..............................

¥
å Un = a + ar + ar² .........................
n=1

dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0

Dengan menggunakan rumus jumlah deret geometri didapat :

Jumlah tak berhingga S¥ = a/(1-r)

Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

Catatan:

a + ar + ar2 + ar3 + ar4 + .................

Jumlah suku-suku pada kedudukan ganjil

a+ar2 +ar4+ ....... Sganjil = a / (1-r²)

Jumlah suku-suku pada kedudukan genap

a + ar3 + ar5 + ...... Sgenap = ar / 1 -r²

Didapat hubungan : Sgenap / Sganjil = r



PENGGUNAAN

Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)

M0, M1, M2, ............., Mn

M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0

M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0

.
.
.
.

Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0


Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)

M0, M1, M2, .........., Mn

M1 = M0 + P/100 . M0 = (1 + P/100) M0

M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0
= (1 + P/100)² M0
.
.
.

Mn = {1 + P/100}n M0

Keterangan :

M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode

Catatan:

Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).

PENGERTIAN

Pada segitiga siku-siku berlaku dalil phitagoras.
Sin a = a/c
Cos a = b/c
tg a = a/b cosec a = c/a
sec a = c/b
ctg a = b/a


HUBUNGAN-HUBUNGAN
ctg a = 1/tg a
sec a = 1/cos a
cosec a = 1/sin a tg a = sin a / cos a
sin2 a + cos2 a = 1
tg2 a + 1 = sec2 a


Satu radian (ditulis 1 rad) adalah besar sudut dari suatu putaran yang panjang busurnya soma dengan jari-jari, lingkaran.2p rad = 360°
p rad = 180°
1 rad = 57,29°



KUADRAN
TANDA-TANDA FUNGSIKuadran I
0° - 90° II
90° - 180° III
180° - 270° IV
270° - 360°
Sin + + - -
Cos + - - +
Tan + - + -


0° 30° 45° 60° 90° 180° 270° 360°
sin 0 1/2 ½ Ö2 ½ Ö3 1 0 -1 0
cos 1 ½ Ö3 ½ Ö2 1/2 0 -1 0 1
tan 0 1/3 Ö3 1 Ö3 ~ 0 ~ 0

Sudut (90 - a)

sin (90 - a) = Cos a
Cos (90 - a) = sin a
tan (90 - a) = cot a Sudut (90 + a)

sin (90 + a) = Cos a
Cos (90 + a) = - sin a
tan (90 + a) = - cot a
Sudut (180 - a)

sin (180 - a) = sin a
Cos (180 - a) = - Cos a
tan (180 - a) = - tan a Sudut (180 + a)

sin (180+a) = -sina
Cos (180 + a) = - Cos a
tan (180 + a) = tan a
Sudut (270 - a)

sin (270 - a) = - Cos a
cos (270 - a) = - sin a
tan (270 - a) = ctg a Sudut (270 + a)

sin (270 + a) = -cos a
cos (270 + a) = sin a
tan (270 + a) = - cot a
Sudut (360 - a)

sin (360 - a) = - sin a
Cos (360 - a) = Cos a
tan (360 - a) = - tan a Sudut (360 + a)

sin (360 + a) = sin a
Cos (360 + a) = Cos a
tan (360 + a) = tan a

Sudut Negatif

sin (-a) = - sin a
Cos (-a) = Cos a
tan (-a) = - tan a



Sudut negatif dihitung searah dengan jarum jam.
Tanda pada sudut negatif sesuai dengan tanda pada kuadran ke IV.

Keterangan :

Untuk a sudut lancipKuadran Hubungan
I a atau (90 - a)
II (180 - a) (90 + a)
III (180 + a) (270 - a)
IV (360 - a) (270 + a)



RINGKASAN

Sudut (180 ± a) ; (360 ± a) ® FUNGSI TETAP, tanda sesuai dengan kuadran

Sudut (90 ± a) ; (270 ± a) ® FUNGSI BERUBAH, tanda sesuai dengan kuadran


DALIL SINUS

a = b = c
sin a sin b sin d

LUAS SEGITIGA

a² = b² + c² - 2 bc cos a
b² = a² + c² - 2 ac cos b
c² = a² + b² - 2 ab cos d

DALIL COSINUS
Luas = ½ ab sin d
= ½ ac b
= ½ bc a

Luas segitiga dengan ketiga sisinya diketahui :

L = Ö(s(s-a)(s-b)(s-c))
s = setengah keliling segitiga
= ½ (a+b+c)

LINGKARAN DALAM, LINGKARAN LUAR DAN LINGKARAN SINGGUNG SUATU SEGITIGA

1. Lingkaran Dalam Segitiga

Lingkaran L1 menyinggung sisi-sisi segitiga ABC, titik pusat lingkaran dalam didapat dari perpotongan garis bagi-garis bagi sudut segitiga ABC.

Hubungan :

rd = Ö[(s-a)(s-b)(s-c)]/s

2. Lingkaran Luar Segitiga


Lingkaran L2 melalui titik-titik sudut segitiga ABC, titik pusat lingkaran luar didapat dari perpotongan garis-garis berat segitiga ABC.

Hubungan :
rL = a = b = c
sin a sin b sin d

rL = abc
4 Ö[s(s-a)(s-b)(s-c)]


3. Lingkaran Singgung Segitiga



Lingkaran L3 menyinggung sisi BC, menyinggung garis BP (BP adalah perpanjangan sisi AB) dan menyinggung garis CQ (CQ adalah perpanjangan sisi AC). Titik pusat lingkaran berada diluar segitiga ABC. Titik pusat lingkaran singgung didapat dari perpotongan garis bagi dalam sudut A dan garis bagi luar sudut B dan sudut C. Terdapat tiga lingkaran singgung yaitu: menyinggung sisi AB, menyinggung sisi BC dan menyinggung sisi AC.

Hubungan :
rsa = jari - jari lingkaran singgung sisi BC

= Ö s(s-b)(s-c)
(s-a)
rsb = jari - jari lingkaran singgung sisi AC

= Ö s(s-a)(s-c)
(s-b)
rsc = jari - jari lingkaran singgung sisi AB

= Ö s(s-a)(s-b)
(s-c)

rdinat Cartesius titik P(xp , yp)
Koordinat Kutub titik P (r, q)

r = jarak titik O ke P
a = sudut yang dibentuk antara garis hubung OP dengan sumbu x(+)


Terdapat hubungan
Kutub ® Cartesius

(r,q) Þ xp = r cos q
yp = r sin q
Cartesius ® Kutub

(xp,yp) Þ = Öxp2 + yp2
tg q = yp/xp Þ q = ?

Minggu, 17 Januari 2010

Rumus-rumus trigonometri


Jumlah dan selisih dua sudut
1) cos (a + b) = cos a cos b - sin a sin b
2) cos (a - b) = cos a cos b + sin a sin b
3) sin (a + b) = sin a cos b + cos a sin b
4) sin (a - b) = sin a cos b - cos a sin b

Rumus trigonometri untuk sudut rangkap
sin 2a = 2 sin a cos a

cos 2a = cos2a - sin2 a

cos 2a = 2cos2a - 1

cos 2a = 1 - 2 sin2 a

Mengubah Rumus Perkalian ke Penjumlahan/Pengurangan

1) cos (a + b) + cos (a - b) = 2 cos a cos b
2) cos (a + b) - cos (a - b) = -2 sin a sin b

3) sin (a + b) + sin (a - b) = 2 sin a cos b

4) sin (a + b) - sin (a - b) = 2 cos a sin b

materi matematika

Sinus
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas


Sinus dalam matematika adalah perbandingan sisi segitiga yang ada di depan sudut dengan sisi miring (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90o). Perhatikan segitiga di kanan; berdasarkan definisi sinus di atas maka nilai sinus adalah



Nilai sinus positif di kuadran I dan II dan negatif di kuadran III dan IV.






Rumus-Rumus Trigonometri
Matematika Kelas 3 > Trigonometri 430

<>

PENJUMLAHAN DUA SUDUT (a + b)

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a

SUDUT RANGKAP

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
= 2 cos2a - 1
= 1 - 2 sin2a
tg 2a = 2 tg 2a
1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na
1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
2 2
sin a - sin b = 2 cos a + b sin a - b
2 2
cos a + cos b = 2 cos a + b cos a - b
2 2
cos a + cos b = - 2 sin a + b sin a - b
2 2

BENTUK PERKALIAN ® PENJUMLAHAN

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut I II III IV
a + - - +
b + + - -


keterangan :
a = koefisien cos x
b = koefisien sin x

Blogger Templates by OurBlogTemplates.com 2008